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Finite Sets

Do these sets have the same size?

{1, 2, 3, 4, 5} and
{2, 3, 4, 5, 6}

{1, 2, 3, 4, 5, 6, 7, 8, 9} and
{2, 4, 6, 8, 10, 12, 14, 16, 18}

set of Snow White’s dwarves and
set of players on the Ultimate frisbee field for one team

set of tennis ball cans
set of tennis balls that go in those cans
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Conclusion

The only way two finite sets can have the same size is if their
elements can be put in a one-to-one correspondence.

Definition

A nonempty set S is finite if there is a natural number n such that
there is a one-to-one correspondence between the set S and the set
{1, 2, . . . , n}.

Implication: an ordered finite set has a largest element.
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Definition of Infinite

Definition

An infinite set is a set that is not finite.

Example

the set of natural numbers N = {1, 2, 3, 4, . . .}
the set of integers Z = {. . . ,−3,−2,−1, 0, 1, 2, 3, . . .}
the set of rational numbers Q
the set of real numbers R
the set of all possible strings of letters
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Natural Numbers

Proposition

The set of all natural numbers is infinite.

Proof by Contradiction.

Assume that the ordered set of natural numbers N is finite.
Then there is a largest natural number; we’ll call that number n.
But n + 1 > n and n + 1 is a natural number.
This is a contradiction! Hence, N must be infinite.
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Definition of Cardinality

Definition

Two sets A and B have the same cardinality if there is a
one-to-one correspondence between the elements of A and the
elements of B.



Examples

Example

Compare the set N = {1, 2, 3, 4, 5, . . .} with the set
N \ {1} = {2, 3, 4, 5, 6, . . .}.

Possible one-to-one correspondence:

1↔ 2

2↔ 3

3↔ 4

...
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Compare the rational numbers Q with N
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Question

Are there any infinite sets that don’t have the same cardinality as
N?



Real Numbers

Theorem

The real numbers are uncountable.

Proof. Assume that the real numbers in the interval (0, 1) are
countable. Then we can make a list {r1, r2, r3, r4, r5, r6, . . .} which
includes all such numbers:

r1 = 0.r11r12r13r14r15r16 . . .

r2 = 0.r21r22r23r24r25r26 . . .

r3 = 0.r31r32r33r34r35r36 . . .

r4 = 0.r41r42r43r44r45r46 . . .

r5 = 0.r51r52r53r54r55r56 . . .

r6 = 0.r61r62r63r64r65r66 . . .
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Proof, continued

Now construct a real number s = 0.s1s2s3s4 . . . as follows:

sn =

{
1 if rnn 6= 1

2 if rnn = 1.

Example

0.123456789 . . .
0.213451235 . . .
0.872347623 . . .
0.234134323 . . .
0.725981234 . . .
0.675894462 . . .
0.987654567 . . .
0.765865373 . . .
0.873457298 . . .

0.2
0.22
0.221
0.2212
0.22121
0.221211
0.2212111
0.22121111
0.221211111
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Proof, continued

Then s is not in the original list {r1, r2, r3, . . .} since it differs by at
least one digit from each of the numbers in that list.
Hence, the original list is not an enumeration of the real numbers
in the interval (0, 1).
We have reached a contradiction, so our assumption that the real
numbers are countable is false.



The Mathematician Behind Infinity



Cantor vs. Infinite Inertia

“The infinite is recognizable but not comprehensible.” (Descartes
1596–1650)

“In mathematics infinite magnitude may never be used as
something final; infinity is only a facon de parler [manner of
speaking], meaning a limit to which certain ratios may approach as
closely as desired when others are permitted to increase
indefinitely.” (Gauss in 1831)

“...I realise that in this undertaking I place myself in a certain
opposition to views widely held concerning the mathematical
infinite and to opinions frequently defended on the nature of
numbers.” (Cantor in 1883)
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More Opposition

“Later generations will regard set theory as a disease from which
one has recovered.” (Poincaré in 1908)

Kronecker called Cantor a “scientific charlatan,” a “renegade” and
a “corrupter of youth.”
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Approval

“The solution of the difficulties which formerly surrounded the
mathematical infinite is probably the greatest achievement of
which our age has to boast.” (Russell)

“This appears to me to be the most admirable flower of the
mathematical intellect and one of the highest achievements of
purely rational human activity.” (Hilbert)
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G. H. Hardy

“[The mathematician’s] subject is the most curious of all—there is
none in which truth plays such odd pranks.”

“A mathematician, like a painter or poet, is a maker of patterns....
The mathematician’s patterns, like the painter’s or the poet’s must
be beautiful ; the ideas like the colours or the words, must fit
together in a harmonious way. Beauty is the first test: there is no
permanent place in the world for ugly mathematics....”
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