Part I: Read and Respond (prepare for class Monday, February 24)

Read Section 2.7, taking notes for yourself and answering the following questions. Review the syllabus for parts (a)-(c) that should be included in this assignment. Here are the reading questions for part (a):

Reading Question(s)

- 1. In Example 2.7.5, Abbott says it's clear that the geometric series diverges if r = 1 and $a \neq 0$. Why is that the case?
- 2. Here's a different take on Example 2.7.5 that doesn't appeal to long-forgotten algebraic identities. For $r \neq 1$, follow these steps:
 - (a) We have

$$s_n = a + ar + ar^2 + ar^3 + \dots + ar^{n-1}.$$
 (1)

Multiply both sides of (1) by r.

- (b) Subtract your answer from (1).
- (c) Now solve for s_n .
- (d) Take the limit as $n \to \infty$ of the expression you get for s_n .
- 3. Which series tests do you remember from calculus (just a curiosity question)?

Part II: Exercises (prepare for class for Monday, February 24)

- 1. Give an example or explain why such an example is impossible to give of a set $S \subset \mathbb{R}$ and a Cauchy sequence $(a_n) \subseteq S$ such that $a_n \to a$ but $a \notin S$.
- 2. In the proof of the lemma saying that Cauchy sequences are bounded, how does $|x_m x_n| < 1$ for all m, n imply $|x_n| < |x_N| + 1$?
- 3. Exercise 2.6.5
- 4. Exercise 2.7.4

Part III: Problems (due Wednesday, February 26 at the beginning of class)

- 1. (I) Exercise 2.6.1
- 2. (P) Exercise 2.6.3

Reminder

We'll have a Chapter 2 quiz on Friday, February 28.