Daily Work #11

Part I

No Part I this time.

Part II: Exercises (prepare for class for Monday, February 10)

- 1. Find the limit of the sequence $(a_n) = \left(\frac{1}{n^2+1}\right)$ and prove your answer using the definition of sequence convergence.
- 2. Suppose that for a particular $\epsilon > 0$ we have found a suitable value of N that "works" for a given sequence in the sense of the definition of sequence convergence. Fill in the blanks with "larger" or "smaller" as appropriate (the two parts below are independent of each other).
 - (a) Then any ______ N will also work for this same particular $\epsilon > 0$.
 - (b) Then the same N will also work for any _____ positive value of ϵ .
- 3. Exercise 2.2.5

Part III: Problems (due Wednesday, February 12 at the beginning of class)

1. (I) Find the limit and prove that the sequence converges to that limit for each of these.

(a)
$$(a_n) = \left(\frac{1-n^2}{2n^2+3}\right)$$

(b) $(b_n) = \left(\frac{3n+1}{2n^2+3}\right)$

2. (P) Exercise 2.2.6