Class Prep (prepare for Monday, January 22)

A useful definition:
Definition 1. An element a of a group $(G, *)$ is a generator of G if repeatedly doing the binary operation of the element with itself produces the entire group G.

Note: this is the abstract algebra term; in number theory, such elements are called primitive roots.
Example 1. The element 1 is a generator of the group $\left(\mathbb{Z}_{6},+\right)$ since we have $\{1,1+1,1+1+1,1+1+$ $1+1,1+1+1+1+1,1+1+1+1+1+1\}=\{1,2,3,4,5,0\}$.

The element 3 is a generator of the group $\left(\mathbb{Z}_{7}^{*}, \cdot\right)$ since $\left\{3,3^{2}, 3^{3}, 3^{4}, 3^{5}, 3^{6}\right\}=\{3,2,6,4,5,1\}$.

Finish your powers of 2 tables for \mathbb{Z}_{n} with $n=5,7,9,11,19$ and consider them in light of the definition above. Also, finish making your 30 PHiZZ units and start working on putting them together into a dodecahedron with no two edges of the same color touching.

Problems (due Friday, January 26 at the beginning of class)

1. Find all generators of $\left(\mathbb{Z}_{5},+\right),\left(\mathbb{Z}_{8},+\right),\left(\mathbb{Z}_{7}^{*}, \cdot\right)$, and $\left(\mathbb{Z}_{9}^{*}, \cdot\right)$ or explain why that particular group doesn't have a generator if that's the case.
