## Class Prep (prepare for Friday, February 9)

Read the Geometric Constructions section from Contemporary Abstract Algebra that you got at the end of class Wednesday. Here's a definition you'll need and some quick examples (and we'll talk about some of the other new terms in class/in a future reading):

Definition 1. $A$ field is a set $F$ together with two binary operations + and $\cdot$ such that for all $a, b, c \in F$,

- $a+b \in F$ and $a \cdot b \in F$ (closure)
- $a+b=b+a$ and $a \cdot b=b \cdot a$ (commutativity)
- there is a $0 \in F$ such that $a+0=a$ (additive identity)
- there is a $1 \in F$ such that $a \cdot 1=a$ (multiplicative identity)
- there is an element $-a \in F$ such that $a+(-a)=0$ (additive inverse)
- there is an element $a^{-1} \in F$ such that $a \cdot a^{-1}=1$ (multiplicative inverse)
- $a \cdot(b+c)=a \cdot b+a \cdot c$ (distributivity)

Example 1. The real numbers form a field, as do the rationals and the complex numbers (do you see why?). The integers do not form a field-why?

## Problems (due Friday, February 16 at the beginning of class)

1. Write out the details showing that the method we used in class does divide a square piece of paper into thirds. Then explain how we can generalize to dividing a square piece of paper into any $n$ ths we so desire (theoretically; we aren't realistically going to be folding many of these well). Don't neglect the even $n \mathrm{~s}$ in your explanation. ©

## Friday's Celebration of Learning

For Friday's celebration of learning, you should be able to

- explain how knotting a strip of paper into a regular polygon is related to $\left(\mathbb{Z}_{n},+\right)$, including
- for which values of $n$ we can make a regular polygon by knotting a single strip and why (or why we can't for a particular $n$ )
- a way to plan your knotting so that it would work if you had the knotting skills (no judgment there!)
- how we can use multiple strips of paper and cosets of a subgroup to also create polygonal knots
- explain how we can use origami to fold a parabola and how we know it's a parabola (not the details of finding the equation; just the idea of how the folding method relates to the definition of a parabola)
- explain how to trisect an angle with origami

