Part I (due Monday, January 29 at the beginning of class)

Read Subsection 2.2.4: Matrix-matrix Products, stopping when you get to Activity 2.2.5 (a very short selection from the book). Then read Definition 1, Definition 2, Example 5, Definition 3, and Example 8 on the blue Matrices handout from class Friday.

Reading Question(s)

1. What is the transpose of the identity matrix?
2. What is the trace of the identity matrix?

Note: you can ask questions about things we've done in class as part of your part (b) for Part I as well as about the reading.

Part II (prepare for Wednesday, January 31)

There will be a WeBWorK assignment posted by Friday night.

Part III: Homework (due Wednesday, January 31 at the beginning of class)

1. True or false? If true, prove; if false, give an explained counterexample.
(a) The zero vector in \mathbb{R}^{n} is a scalar multiple of any other vector in \mathbb{R}^{n}.
(b) The zero vector cannot be a linear combination of two nonzero vectors.
(c) Given two vectors \vec{v} and \vec{w} in \mathbb{R}^{n}, the vector $\frac{1}{2} \vec{v}$ is a linear combination of \vec{v} and \vec{w}.
(d) Given any two nonzero vectors \vec{v} and \vec{w} in \mathbb{R}^{2}, we can obtain any vector in \mathbb{R}^{2} as a linear combination of \vec{v} and \vec{w}.
(e) Given any two distinct vectors \vec{v} and \vec{w} in \mathbb{R}^{2}, we can obtain any vector in \mathbb{R}^{2} as a linear combination of \vec{v} and \vec{w}.
(f) If \vec{u} is in the span of \vec{v} and \vec{w}, then $2 \vec{u}$ is also in the span of \vec{v} and \vec{w}.

Running list of vocabulary words that could be a quiz word

- linear equation
- system of linear equations
- linear combination of a set of vectors
- span of a set of vectors
- linearly independent
- linearly dependent
- reduced row echelon form
- pivot
- homogeneous system
- free variable
- row equivalent
- consistent system
- inconsistent system

