Part I (due Friday, April 26 at the beginning of class)

Here's the theory behind the diagonalization process we used in class Wednesday:

Theorem 1. If A is an $n \times n$ matrix, then the following are equivalent:

- (a) A is diagonalizable.
- (b) A has n linearly independent eigenvectors.

Proof. (a) \implies (b): Suppose A is diagonalizable. Then there exists an invertible matrix

$$P = \begin{bmatrix} p_{11} & p_{12} & \cdots & p_{1n} \\ p_{21} & p_{22} & \cdots & p_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ p_{n1} & p_{n2} & \cdots & p_{nn} \end{bmatrix}$$

such that $P^{-1}AP = D$, a diagonal matrix, which implies that AP = PD. Thus, we have

$$AP = \begin{bmatrix} p_{11} & p_{12} & \cdots & p_{1n} \\ p_{21} & p_{22} & \cdots & p_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ p_{n1} & p_{n2} & \cdots & p_{nn} \end{bmatrix} \begin{bmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_n \end{bmatrix} = \begin{bmatrix} \lambda_1 p_{11} & \lambda_2 p_{12} & \cdots & \lambda_n p_{1n} \\ \lambda_1 p_{21} & \lambda_2 p_{22} & \cdots & \lambda_n p_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ \lambda_1 p_{n1} & \lambda_2 p_{n2} & \cdots & \lambda_n p_{nn} \end{bmatrix}$$

Let $\vec{p_1}, \vec{p_2}, \ldots, \vec{p_n}$ be the column vectors of P. Then the column vectors of AP are

$$\lambda_1 \vec{p_1}, \lambda_2 \vec{p_2}, \dots, \lambda_n \vec{p_n}.$$

We can also write the column vectors of AP as

$$A\vec{p_1}, A\vec{p_2}, \ldots, A\vec{p_n}.$$

Hence, we must have that

$$A\vec{p}_1 = \lambda_1 \vec{p}_1, A\vec{p}_2 = \lambda_2 \vec{p}_2, \dots, A\vec{p}_n = \lambda_n \vec{p}_n.$$

Since P is invertible, its columns are nonzero, so $\lambda_1, \lambda_2, \ldots, \lambda_n$ are eigenvalues for A and $\vec{p}_1, \vec{p}_2, \ldots, \vec{p}_n$ are corresponding eigenvectors. Also since P is invertible, $\vec{p}_1, \vec{p}_2, \ldots, \vec{p}_n$ are linearly independent (from the Purple Theorem).

(b) \implies (a): Suppose that A has n linearly independent eigenvectors $\vec{p_1}, \vec{p_2}, \ldots, \vec{p_n}$ with corresponding eigenvalues $\lambda_1, \lambda_2, \ldots, \lambda_n$ and let

$$P = \begin{bmatrix} p_{11} & p_{12} & \cdots & p_{1n} \\ p_{21} & p_{22} & \cdots & p_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ p_{n1} & p_{n2} & \cdots & p_{nn} \end{bmatrix}$$

The column vectors of the product AP are

$$A\vec{p_1}, A\vec{p_2}, \ldots, A\vec{p_n}.$$

Since the λ_i 's are eigenvalues for A and the p_i 's are corresponding eigenvectors, we also have

$$A\vec{p}_1 = \lambda_1 \vec{p}_1, A\vec{p}_2 = \lambda_2 \vec{p}_2, \dots, A\vec{p}_n = \lambda_n \vec{p}_n,$$

 \mathbf{SO}

$$AP = \begin{bmatrix} \lambda_1 p_{11} & \lambda_2 p_{12} & \cdots & \lambda_n p_{1n} \\ \lambda_1 p_{21} & \lambda_2 p_{22} & \cdots & \lambda_n p_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ \lambda_1 p_{n1} & \lambda_2 p_{n2} & \cdots & \lambda_n p_{nn} \end{bmatrix} = \begin{bmatrix} p_{11} & p_{12} & \cdots & p_{1n} \\ P_{21} & p_{22} & \cdots & p_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ p_{n1} & p_{n2} & \cdots & p_{nn} \end{bmatrix} \begin{bmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_n \end{bmatrix} = PD$$

Since $\vec{p_1}, \vec{p_2}, \ldots, \vec{p_n}$ are linearly independent, P must be invertible, so $AP = PD \implies P^{-1}AP = D$. Hence, A is diagonalizable.

So we see that an $n \times n$ matrix with n linearly independent eigenvectors is diagonalizable, and we get the following method for diagonalizing A:

- 1. Find *n* linearly independent eigenvectors $\vec{p_1}, \vec{p_2}, \ldots, \vec{p_n}$ for *A*.
- 2. Form a matrix P with columns $\vec{p_1}, \vec{p_2}, \ldots, \vec{p_n}$.
- 3. The matrix $P^{-1}AP$ will be diagonal with $\lambda_1, \lambda_2, \ldots, \lambda_n$ as the diagonal entries.

You don't need to turn anything in for Part I this time, but bring your questions on this reading to class!

Part II: Exercises (due by class time Friday, April 26)

Read Definition 1 on the front of the salmon Norms and Dot Products handout and try Example 1. Also read Theorem 1 on the back, and if you're feeling ambitious, try to prove any of it you can.

Part III: Homework (due Wednesday, May 1 by 2:30 PM)

- 1. True or False? If true, prove; if false, give an explained counterexample.
 - (a) The eigenvalues of a matrix A are the same as the eigenvalues of $\operatorname{rref}(A)$.
 - (b) If A and B are invertible matrices, then AB is similar to BA.
 - (c) If A is diagonalizable, then A^T is diagonalizable.
 - (d) If there is a basis for \mathbb{R}^n consisting of eigenvectors of an $n \times n$ matrix A, then A is diagonalizable.

Running list of vocabulary words that could be a quiz word

- linear equation
- system of linear equations
- linear combination of a set of vectors
- span of a set of vectors
- linearly independent
- linearly dependent
- reduced row echelon form
- pivot
- homogeneous system
- free variable
- row equivalent
- consistent system
- inconsistent system
- trace of a matrix
- transpose of a matrix
- inverse of a matrix
- elementary matrix
- transformation
- domain
- codomain
- range
- vector space (I will not ever ask you to define this on a quiz—the definition is way too long—but you should make sure you know what makes something a vector space)
- subspace
- basis
- finite-dimensional vector space
- $\bullet~{\rm dimension}$
- coordinate vector
- $\bullet\,$ column space of A
- row space of A

- null space of A
- $\bullet~{\rm rank}$
- nullity
- $\bullet\,$ linear transformation
- $\bullet~{\rm kernel}$
- range
- isomorphism
- isomorphic vector spaces
- characteristic equation
- eigenvector
- eigenvalue
- diagonalizable matrix