Part I (due Monday, April 22 at the beginning of class)

Finish up Example 3 on the Eigenvalues and Eigenvectors handout, read Theorem 1, and see what you can do with filling in the blanks between Finding Eigenvectors and Example 4.

Part II: Exercises (due by class time Wednesday, April 24)

There will be a WeBWorK assignment posted by Friday night.

Part III: Homework (due Wednesday, April 24 at the beginning of class)

1. True or False? If true, prove; if false, give an explained counterexample.
(a) A is invertible if and only if $A^{T} A$ is invertible.
(b) If E is an elementary matrix, then $E \vec{x}=\overrightarrow{0}$ has only the trivial solution.
(c) If A is a square matrix and $A \vec{x}=\lambda \vec{x}$ for some nonzero scalar λ, then \vec{x} is an eigenvector of A.
2. Show that the characteristic equation for a 2×2 matrix A can be written as $\lambda^{2}-\operatorname{tr}(A) \lambda+\operatorname{det}(A)=0$.

Running list of vocabulary words that could be a quiz word

- linear equation
- system of linear equations
- linear combination of a set of vectors
- span of a set of vectors
- linearly independent
- linearly dependent
- reduced row echelon form
- pivot
- homogeneous system
- free variable
- row equivalent
- consistent system
- inconsistent system
- trace of a matrix
- transpose of a matrix
- inverse of a matrix
- elementary matrix
- transformation
- domain
- codomain
- range
- vector space (I will not ever ask you to define this on a quiz - the definition is way too long-but you should make sure you know what makes something a vector space)
- subspace
- basis
- finite-dimensional vector space
- dimension
- coordinate vector
- column space of A
- row space of A
- null space of A
- rank
- nullity
- linear transformation
- kernel
- range
- isomorphism
- isomorphic vector spaces
- characteristic equation
- eigenvector
- eigenvalue

