Part I (due Friday, April 19 at the beginning of class)

So that we have some more time to spend on some important topics, here's the result and proof I asked you to think about at the end of class Wednesday:

Theorem 1. Let A and B be $n \times n$ matrices. Then det(AB) = det(A) det(B).

Proof.

Case 1: A is not invertible.

Then $det(A) = 0 \implies det(A) det(B) = 0.$

Also, AB is not invertible, which implies that det(AB) = 0.

Case 2: A is invertible.

Then there are elementary matrices E_1, \ldots, E_r such that $A = E_1 E_2 \cdots E_r$.

So we have

$$det(AB) = det(E_1E_2\cdots E_4B)$$

= det(E_1) det(E_2) \dots det(E_4) det(B)
= det(E_1E_2\cdots E_4) det(B)
= det(A) det(B)

_

And one more result:

Theorem 2. If A is invertible, then $det(A^{-1}) = \frac{1}{det(A)}$.

Proof. Since $A^{-1}A = I$, we have $\det(A^{-1}A) = \det(I) \implies \det(A^{-1})\det(A) = 1 \implies (\text{since } \det(A) \neq 0)$ $\det(A^{-1}) = \frac{1}{\det(A)}$.

You don't need to turn anything in for Part I this time, but bring any questions you have on this reading.

Part II

No Part II this time.

Part III: Homework (due Wednesday, April 24 at the beginning of class)

1. Here's another use for determinants:

Theorem 3 (Cramer's Rule). If $A\vec{x} = \vec{b}$ is an $n \times n$ linear system such that $det(A) \neq 0$, then the system has a unique solution, specifically:

$$x_1 = \frac{\det(A_1)}{\det(A)}, x_2 = \frac{\det(A_2)}{\det(A)}, \dots x_n = \frac{\det(A_n)}{\det(A)},$$

where A_j is the matrix obtained by replacing the *j*th column of A by the column \vec{b} .

Use Cramer's Rule to find x_2 in the following system.

$$3x_1 - 2x_2 = 6 -5x_1 + 4x_2 = 8$$

2. Let
$$A = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix}$$
, where $a, b, c, d, e, f, g, h, i \in \mathbb{R}$ and $\det(A) = -7$. Find the following:
(a) $\det(3A)$
(b) $\det(A^{-1})$
(c) $\det(2A^{-1})$
(d) $\det(2A)^{-1}$
(e) $\det\left(\begin{bmatrix} a & g & d \\ b & h & e \\ c & i & f \end{bmatrix}\right)$

Running list of vocabulary words that could be a quiz word

- linear equation
- system of linear equations
- linear combination of a set of vectors
- span of a set of vectors
- linearly independent
- linearly dependent
- reduced row echelon form
- pivot
- homogeneous system
- free variable
- row equivalent

- consistent system
- inconsistent system
- trace of a matrix
- transpose of a matrix
- inverse of a matrix
- elementary matrix
- $\bullet \ {\rm transformation}$
- \bullet domain
- $\bullet \ {\rm codomain}$
- range
- vector space (I will not ever ask you to define this on a quiz—the definition is way too long—but you should make sure you know what makes something a vector space)
- subspace
- \bullet basis
- finite-dimensional vector space
- $\bullet~{\rm dimension}$
- $\bullet\,$ coordinate vector
- column space of A
- row space of A
- null space of A
- $\bullet \ {\rm rank}$
- nullity
- linear transformation
- kernel
- range
- isomorphism
- isomorphic vector spaces