Part I (due Friday, April 19 at the beginning of class)

So that we have some more time to spend on some important topics, here's the result and proof I asked you to think about at the end of class Wednesday:

Theorem 1. Let A and B be $n \times n$ matrices. Then $\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)$.

Proof.

Case 1: A is not invertible.

Then $\operatorname{det}(A)=0 \Longrightarrow \operatorname{det}(A) \operatorname{det}(B)=0$.
Also, $A B$ is not invertible, which implies that $\operatorname{det}(A B)=0$.

Case 2: A is invertible.

Then there are elementary matrices E_{1}, \ldots, E_{r} such that $A=E_{1} E_{2} \cdots E_{r}$.
So we have

$$
\begin{aligned}
\operatorname{det}(A B) & =\operatorname{det}\left(E_{1} E_{2} \cdots E_{4} B\right) \\
& =\operatorname{det}\left(E_{1}\right) \operatorname{det}\left(E_{2}\right) \cdots \operatorname{det}\left(E_{4}\right) \operatorname{det}(B) \\
& =\operatorname{det}\left(E_{1} E_{2} \cdots E_{4}\right) \operatorname{det}(B) \\
& =\operatorname{det}(A) \operatorname{det}(B)
\end{aligned}
$$

And one more result:
Theorem 2. If A is invertible, then $\operatorname{det}\left(A^{-1}\right)=\frac{1}{\operatorname{det}(A)}$.

Proof. Since $A^{-1} A=I$, we have $\operatorname{det}\left(A^{-1} A\right)=\operatorname{det}(I) \Longrightarrow \operatorname{det}\left(A^{-1}\right) \operatorname{det}(A)=1 \Longrightarrow \quad($ since $\operatorname{det}(A) \neq 0)$ $\operatorname{det}\left(A^{-1}\right)=\frac{1}{\operatorname{det}(A)}$.

You don't need to turn anything in for Part I this time, but bring any questions you have on this reading.

Part II

No Part II this time.

Part III: Homework (due Wednesday, April 24 at the beginning of class)

1. Here's another use for determinants:

Theorem 3 (Cramer's Rule). If $A \vec{x}=\vec{b}$ is an $n \times n$ linear system such that $\operatorname{det}(A) \neq 0$, then the system has a unique solution, specifically:

$$
x_{1}=\frac{\operatorname{det}\left(A_{1}\right)}{\operatorname{det}(A)}, x_{2}=\frac{\operatorname{det}\left(A_{2}\right)}{\operatorname{det}(A)}, \ldots x_{n}=\frac{\operatorname{det}\left(A_{n}\right)}{\operatorname{det}(A)},
$$

where A_{j} is the matrix obtained by replacing the j th column of A by the column \vec{b}.
Use Cramer's Rule to find x_{2} in the following system.

$$
\begin{array}{r}
3 x_{1}-2 x_{2}=6 \\
-5 x_{1}+4 x_{2}=8
\end{array}
$$

2. Let $A=\left[\begin{array}{lll}a & b & c \\ d & e & f \\ g & h & i\end{array}\right]$, where $a, b, c, d, e, f, g, h, i \in \mathbb{R}$ and $\operatorname{det}(A)=-7$. Find the following:
(a) $\operatorname{det}(3 A)$
(b) $\operatorname{det}\left(A^{-1}\right)$
(c) $\operatorname{det}\left(2 A^{-1}\right)$
(d) $\operatorname{det}(2 A)^{-1}$
(e) $\operatorname{det}\left(\left[\begin{array}{lll}a & g & d \\ b & h & e \\ c & i & f\end{array}\right]\right)$

Running list of vocabulary words that could be a quiz word

- linear equation
- system of linear equations
- linear combination of a set of vectors
- span of a set of vectors
- linearly independent
- linearly dependent
- reduced row echelon form
- pivot
- homogeneous system
- free variable
- row equivalent
- consistent system
- inconsistent system
- trace of a matrix
- transpose of a matrix
- inverse of a matrix
- elementary matrix
- transformation
- domain
- codomain
- range
- vector space (I will not ever ask you to define this on a quiz-the definition is way too long-but you should make sure you know what makes something a vector space)
- subspace
- basis
- finite-dimensional vector space
- dimension
- coordinate vector
- column space of A
- row space of A
- null space of A
- rank
- nullity
- linear transformation
- kernel
- range
- isomorphism
- isomorphic vector spaces

