Part I (due Friday, April 12 at the beginning of class)

Think some more about what things we can add to the Purple Theorem about $T_{A}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ with $T(\vec{x})=A \vec{x}$. We'll discuss these in class.

Also, read this theorem (it's the big one we've been saying is coming!!) and proof, filling in the missing parts as your reading questions:
Theorem 1. Every real n-dimensional vector space is isomorphic to \mathbb{R}^{n}.

Proof. Let V be a real n-dimensional vector space and let $\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{n}$ be a basis for V. For any $\vec{w} \in V$ there exist scalars $k_{1}, k_{2}, \ldots, k_{n}$ such that

$$
\vec{w}=k_{1} \vec{v}_{1}+k_{2} \vec{v}_{2}+\cdots+k_{n} \vec{v}_{n} .
$$

Define the transformation $T: V \rightarrow \mathbb{R}^{n}$ by

$$
T(\vec{w})=\left(k_{1}, k_{2}, \ldots, k_{n}\right) .
$$

Claim: T is an isomorphism from V to \mathbb{R}^{n} (so we need to show T is linear, one-to-one, and onto \mathbb{R}^{n}).
Linearity: Let $\vec{u}, \vec{v} \in V$ and $k \in \mathbb{R}$. Then there exist scalars $c_{1}, c_{2}, \ldots, c_{n}$ and $d_{1}, d_{2}, \ldots, d_{n}$ such that

$$
\begin{gathered}
\vec{u}= \\
\text { and } \\
\vec{v}=
\end{gathered}
$$

so

$$
T(\vec{u}+\vec{v})=
$$

and

$$
T(k \vec{u})=
$$

One-to-one: Suppose $T(\vec{v})=T(\vec{w})$ for some $\vec{v}, \vec{w} \in V$, where $\vec{v}=c_{1} \vec{v}_{1}+c_{2} \vec{v}_{2}+\cdots+c_{n} \vec{v}_{n}$ and $\vec{w}=$ $d_{1} \vec{v}_{1}+d_{2} \vec{v}_{2}+\cdots+d_{n} \vec{v}_{n}$. Use this setup to show that T is one-to-one; i.e., show that $\vec{v}=\vec{w}$.

Onto \mathbb{R}^{n} : Let $\vec{w} \in \mathbb{R}^{n}$, i.e., $\vec{w}=\left(c_{1}, c_{2}, \ldots, c_{n}\right)$ for some $c_{i} \in \mathbb{R}$. Use the definition of T to produce a vector in \mathbb{V} that T maps to \vec{w}.

Therefore, V and \mathbb{R}^{n} are isomorphic.

So, in particular, every vector space of dimension n is isomorphic to \mathbb{R}^{n}. This means that all the things that we know about \mathbb{R}^{n} as a vector space can be translated into results about any other n-dimensional vector space via a vector space isomorphism.

Part II (prepare for class Friday, April 12)

1. Consider $V=M_{3 \times 3}$.
(a) What is $\operatorname{dim}\left(M_{3 \times 3}\right)$? And thus, what is n such that $M_{3 \times 3}$ is isomorphic to \mathbb{R}^{n} ?
(b) Using the standard basis for $M_{3 \times 3}$ and the transformation described in the proof above, to what element of that \mathbb{R}^{n} does the matrix $\left[\begin{array}{ccc}1 & 2 & 50 \\ 7 & -100 & -50 \\ -7 & \frac{11}{2} & 1000\end{array}\right]$ get mapped?

Part III: Homework (due Wednesday, April 10 at the beginning of class)

1. Let $T: P_{1} \rightarrow \mathbb{R}$ be the transformation such that $T(\vec{p})=\int_{-1}^{1} p(x) d x$. Is T one-to-one? Justify your answer.
2. Let $T: C^{1}[0,1] \rightarrow \mathbb{R}$ such that $T(\vec{f})=f(0)+2 f^{\prime}(0)+3 f^{\prime}(1)$. Is T one-to-one? Justify your conclusion.

Running list of vocabulary words that could be a quiz word

- linear equation
- system of linear equations
- linear combination of a set of vectors
- span of a set of vectors
- linearly independent
- linearly dependent
- reduced row echelon form
- pivot
- homogeneous system
- free variable
- row equivalent
- consistent system
- inconsistent system
- trace of a matrix
- transpose of a matrix
- inverse of a matrix
- elementary matrix
- transformation
- domain
- codomain
- range
- vector space (I will not ever ask you to define this on a quiz - the definition is way too long-but you should make sure you know what makes something a vector space)
- subspace
- basis
- finite-dimensional vector space
- dimension
- coordinate vector
- column space of A
- row space of A
- null space of A
- rank
- nullity
- linear transformation
- kernel
- range
- isomorphism
- isomorphic vector spaces

