Part I (due Friday, April 12 at the beginning of class)

Think some more about what things we can add to the Purple Theorem about $T_A \colon \mathbb{R}^n \to \mathbb{R}^n$ with $T(\vec{x}) = A\vec{x}$. We'll discuss these in class.

Also, read this theorem (it's the big one we've been saying is coming!!) and proof, filling in the missing parts as your reading questions:

Theorem 1. Every real n-dimensional vector space is isomorphic to \mathbb{R}^n .

Proof. Let V be a real n-dimensional vector space and let $\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_n$ be a basis for V. For any $\vec{w} \in V$ there exist scalars k_1, k_2, \ldots, k_n such that

$$\vec{w} = k_1 \vec{v}_1 + k_2 \vec{v}_2 + \dots + k_n \vec{v}_n.$$

Define the transformation $T: V \to \mathbb{R}^n$ by

$$T(\vec{w}) = (k_1, k_2, \dots, k_n).$$

Claim: T is an isomorphism from V to \mathbb{R}^n (so we need to show T is linear, one-to-one, and onto \mathbb{R}^n).

Linearity: Let $\vec{u}, \vec{v} \in V$ and $k \in \mathbb{R}$. Then there exist scalars c_1, c_2, \ldots, c_n and d_1, d_2, \ldots, d_n such that

$$\vec{u} =$$

and
 $\vec{v} =$

 \mathbf{SO}

$$T(\vec{u} + \vec{v}) =$$

and

$$T(k\vec{u}) =$$

One-to-one: Suppose $T(\vec{v}) = T(\vec{w})$ for some $\vec{v}, \vec{w} \in V$, where $\vec{v} = c_1\vec{v}_1 + c_2\vec{v}_2 + \cdots + c_n\vec{v}_n$ and $\vec{w} = d_1\vec{v}_1 + d_2\vec{v}_2 + \cdots + d_n\vec{v}_n$. Use this setup to show that T is one-to-one; i.e., show that $\vec{v} = \vec{w}$.

Onto \mathbb{R}^n : Let $\vec{w} \in \mathbb{R}^n$, i.e., $\vec{w} = (c_1, c_2, \ldots, c_n)$ for some $c_i \in \mathbb{R}$. Use the definition of T to produce a vector in \mathbb{V} that T maps to \vec{w} .

Therefore, V and \mathbb{R}^n are isomorphic.

So, in particular, every vector space of dimension n is isomorphic to \mathbb{R}^n . This means that all the things that we know about \mathbb{R}^n as a vector space can be translated into results about any other *n*-dimensional vector space via a vector space isomorphism.

Part II (prepare for class Friday, April 12)

- 1. Consider $V = M_{3 \times 3}$.
 - (a) What is dim $(M_{3\times 3})$? And thus, what is n such that $M_{3\times 3}$ is isomorphic to \mathbb{R}^n ?
 - (b) Using the standard basis for $M_{3\times3}$ and the transformation described in the proof above, to what element of that \mathbb{R}^n does the matrix $\begin{bmatrix} 1 & 2 & 50 \\ 7 & -100 & -50 \\ -7 & \frac{11}{2} & 1000 \end{bmatrix}$ get mapped?

Part III: Homework (due Wednesday, April 10 at the beginning of class)

- 1. Let $T: P_1 \to \mathbb{R}$ be the transformation such that $T(\vec{p}) = \int_{-1}^{1} p(x) dx$. Is T one-to-one? Justify your answer.
- 2. Let $T: C^1[0,1] \to \mathbb{R}$ such that $T(\vec{f}) = f(0) + 2f'(0) + 3f'(1)$. Is T one-to-one? Justify your conclusion.

Running list of vocabulary words that could be a quiz word

- $\bullet~$ linear equation
- system of linear equations
- linear combination of a set of vectors
- span of a set of vectors
- linearly independent
- linearly dependent
- reduced row echelon form
- pivot
- homogeneous system
- free variable
- row equivalent
- consistent system
- inconsistent system
- trace of a matrix
- transpose of a matrix
- inverse of a matrix
- elementary matrix

- transformation
- \bullet domain
- $\bullet~{\rm codomain}$
- range
- vector space (I will not ever ask you to define this on a quiz—the definition is way too long—but you should make sure you know what makes something a vector space)
- subspace
- \bullet basis
- finite-dimensional vector space
- $\bullet~{\rm dimension}$
- coordinate vector
- column space of A
- row space of A
- null space of A
- $\bullet \ {\rm rank}$
- nullity
- linear transformation
- $\bullet~{\rm kernel}$
- range
- isomorphism
- isomorphic vector spaces