Part I (due Friday, April 5 at the beginning of class)

We've seen these definitions before:
Definition 1. A transformation $T: V \rightarrow W$ is one-to-one if whenever $T(\vec{v})=T(\vec{w}), \vec{v}=\vec{w}$.

In other words, T sends every vector in its domain to a unique vector in its codomain; no two vectors have the same output.

For a simple example, $f: \mathbb{R} \rightarrow \mathbb{R}$ such that $f(x)=x+2$ is one-to-one since if $f\left(x_{1}\right)=f\left(x_{2}\right)$, then $x_{1}+2=x_{2}+2$, which implies that $x_{1}=x_{2}$.

However, $g(x)=x^{2}$ is not one-to-one since $g(2)=4=g(-2)$, but $2 \neq-2$.
Definition 2. A transformation $T: V \rightarrow W$ is onto W if for every $\vec{w} \in W$, there is a \vec{v} in V such that $T(\vec{v})=\vec{w}$.

In other words, everything in W has something in V that maps to it through T; the range of T is equal to the codomain of T.

For the examples above, $f(x)=x+2$ is onto \mathbb{R} but $g(x)=x^{2}$ is not onto \mathbb{R}. Reading Question 1: Why?
And now for a new definition:
Definition 3. A linear transformation $T: V \rightarrow W$ that is one-to-one and onto is called an isomorphism. If there is an isomorphism between two vector spaces V and W, then the vector spaces are said to be isomorphic.

Part II (prepare for class Friday, April 5)

1. Consider the transformation $T: P_{3} \rightarrow \mathbb{R}^{4}$ such that $T\left(a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}\right)=\left[\begin{array}{l}a_{0} \\ a_{1} \\ a_{2} \\ a_{3}\end{array}\right]$.
(a) Is this a linear transformation?
(b) Is this transformation one-to-one?
(c) Is this transformation onto?

Part III: Homework (due Wednesday, April 10 at the beginning of class)

1. Let $\left\{\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{n}\right\}$ be a basis for a vector space V, and let $T: V \rightarrow W$ be a linear transformation. Show that if

$$
T\left(\vec{v}_{1}\right)=T\left(\vec{v}_{2}\right)=\cdots=T\left(\vec{v}_{n}\right)=\overrightarrow{0},
$$

then T is the zero transformation (as in, the transformation that takes every vector in V to the zero vector in W).
2. True or false: there is exactly one linear transformation $T: V \rightarrow W$ for which $T(\vec{u}+\vec{v})=T(\vec{u}-\vec{v})$ for all $\vec{u}, \vec{v} \in V$. Justify your answer with a proof or an explained counterexample.

Running list of vocabulary words that could be a quiz word

- linear equation
- system of linear equations
- linear combination of a set of vectors
- span of a set of vectors
- linearly independent
- linearly dependent
- reduced row echelon form
- pivot
- homogeneous system
- free variable
- row equivalent
- consistent system
- inconsistent system
- trace of a matrix
- transpose of a matrix
- inverse of a matrix
- elementary matrix
- transformation
- domain
- codomain
- range
- vector space (I will not ever ask you to define this on a quiz - the definition is way too long-but you should make sure you know what makes something a vector space)
- subspace
- basis
- finite-dimensional vector space
- dimension
- coordinate vector
- column space of A
- row space of A
- null space of A
- rank
- nullity
- linear transformation
- kernel
- range

