Part I (due Monday, March 25 at the beginning of class)

Read the definition of *linear transformation* at the top of the gold Linear Transformations handout and try out (a) and (b) in Example 1. Come prepared to discuss those two examples.

Part II (due Wednesday, March 27)

There will be a WeBWorK assignment posted by Friday night. Note that there are various notational differences for the name of the transition matrix in some of the problems; stick to reading the words of the problems to tell you which transition matrix you're looking for.

Part III: Homework (due Wednesday, March 27 at the beginning of class)

- 1. True or False? If true, prove; if false, give an explained counterexample.
 - (a) If $P_{\mathcal{B}_1 \to \mathcal{B}_2}$ is a diagonal matrix, then each vector in \mathcal{B}_2 is a scalar multiple of some vector in \mathcal{B}_1 .
 - (b) If each vector in \mathcal{B}_2 is a scalar multiple of some vector in \mathcal{B}_1 , then $P_{\mathcal{B}_1 \to \mathcal{B}_2}$ is a diagonal matrix.
 - (c) If A is a square matrix, then $A = P_{\mathcal{B}_1 \to \mathcal{B}_2}$ for some bases \mathcal{B}_1 and \mathcal{B}_2 for \mathbb{R}^n .

Running list of vocabulary words that could be a quiz word

- linear equation
- system of linear equations
- linear combination of a set of vectors
- span of a set of vectors
- linearly independent
- linearly dependent
- reduced row echelon form
- pivot
- homogeneous system
- free variable
- row equivalent
- consistent system
- inconsistent system

- trace of a matrix
- transpose of a matrix
- inverse of a matrix
- elementary matrix
- $\bullet~{\rm transformation}$
- \bullet domain
- $\bullet~{\rm codomain}$
- range
- vector space (I will not ever ask you to define this on a quiz—the definition is way too long—but you should make sure you know what makes something a vector space)
- subspace
- \bullet basis
- finite-dimensional vector space
- $\bullet~{\rm dimension}$
- $\bullet\,$ coordinate vector
- column space of A
- row space of A
- null space of A
- $\bullet \ {\rm rank}$
- nullity
- $\bullet\,$ linear transformation