Part I

You don't need to turn anything in on Monday for Part I, but read through this and bring any questions you have on it: Here are two theorems that formalize the discussion we had about finding bases for row spaces and column spaces.

Theorem 1. If A and B are row equivalent matrices, then

- A given set of column vectors in A is linearly independent if and only if the corresponding column vectors of B are linearly independent.
- A given set of column vectors in A forms a basis for $C(A)$ if and only if the corresponding colum vectors of B form a basis for $C(B)$.

Theorem 2. If a matrix R is in row-echelon form, then

- the row vectors with the leading ones form a basis for $C\left(R^{T}\right)$, and
- the column vectors with the leading ones (in the row vectors) form a basis for the column space of R.

Example 1. Find a basis for $C(A)$ and $C\left(A^{T}\right)$ when $A=\left[\begin{array}{rrrrr}1 & 3 & -1 & 0 & 1 \\ 2 & -1 & 4 & 3 & 6 \\ 1 & 5 & 2 & -3 & -2\end{array}\right]$.
Well, $A \sim\left[\begin{array}{rrrrr}1 & 0 & 0 & 2 & \frac{10}{3} \\ 0 & 1 & 0 & -\frac{9}{11} & -\frac{10}{11} \\ 0 & 0 & 1 & -\frac{5}{11} & -\frac{13}{33}\end{array}\right]$, so $\left\{\left[\begin{array}{c}1 \\ 0 \\ 0 \\ 2 \\ \frac{10}{3}\end{array}\right],\left[\begin{array}{c}0 \\ 1 \\ 0 \\ -\frac{9}{11} \\ -\frac{10}{11}\end{array}\right],\left[\begin{array}{r}0 \\ 0 \\ 1 \\ -\frac{5}{11} \\ -\frac{13}{33}\end{array}\right]\right\}$ forms a basis for $C\left(A^{T}\right)$ and

$$
\left\{\left[\begin{array}{l}
1 \\
2 \\
1
\end{array}\right],\left[\begin{array}{r}
3 \\
-1 \\
5
\end{array}\right],\left[\begin{array}{r}
-1 \\
4 \\
2
\end{array}\right]\right\} \quad \text { forms a basis for } C(A)
$$

Part II (due Wednesday, March 20)

There will be a WeBWorK assignment posted by Friday night.

Part III: Homework (due Wednesday, March 20 at the beginning of class)

1. Find a 3×3 matrix in the set of all matrices with only real entries whose null space is the given geometric object. Make sure you show why each of your answers works.
(a) a point
(b) a line
(c) a plane
2. True or false? If true, prove; if false, give an explained counterexample: If the row space of A is the same as the row space of B, then $C(A)=C(B)$.

Running list of vocabulary words that could be a quiz word

- linear equation
- system of linear equations
- linear combination of a set of vectors
- span of a set of vectors
- linearly independent
- linearly dependent
- reduced row echelon form
- pivot
- homogeneous system
- free variable
- row equivalent
- consistent system
- inconsistent system
- trace of a matrix
- transpose of a matrix
- inverse of a matrix
- elementary matrix
- transformation
- domain
- codomain
- range
- vector space (I will not ever ask you to define this on a quiz - the definition is way too long-but you should make sure you know what makes something a vector space)
- subspace
- basis
- finite-dimensional vector space
- dimension
- coordinate vector
- column space of A
- row space of A
- null space of A

