Part I (due Friday, March 8 at the beginning of class)

I updated DW 20 reading to not include determinants (I'm sorry-I copied an old example too quickly!); the only change is that we can just row reduce the matrix to see that its rref is I and thus we know the matrix is invertible.

Definition 1. A nonzero vector space V is called finite-dimensional if it contains a finite set of vectors $\left\{\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{n}\right\}$ that forms a basis for V. If no such set exists, V is called infinite-dimensional. We also regard the vector space $\{\overrightarrow{0}\}$ as finite-dimensional.

Example 1. - finite-dimensional: $\mathbb{R}^{n}, M_{m \times n}$, etc.

- infinite-dimensional: $F(-\infty, \infty), C[a, b]$, etc.

Definition 2. If V has a basis with n vectors, then we say that V is n-dimensional.

Reading Question(s)

1. What dimension is the vector space $P_{3}(x)$? What about $M_{2 \times 2}$?

Part II (prepare for Friday, March 8)

Finish the examples on the Bases and Coordinate Vectors handout.

Part III: Homework (due Friday, March 15 at the beginning of class)

1. True or False (if true, prove; if false, give an explained counterexample):
(a) In P_{3}, the set of all polynomials of degree three or less with real coefficients, every set with more than three vectors is linearly independent.
(b) If $\left\{\vec{v}_{1}, \vec{v}_{2}\right\}$ is linearly independent and $\vec{v}_{3} \notin \operatorname{span}\left(\left\{\vec{v}_{1}, \vec{v}_{2}\right\}\right)$, then $\left\{\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}\right\}$ is linearly independent.
(c) If \vec{u}, \vec{v}, and \vec{w} are vectors in a vector space V, then $\{\vec{u}-\vec{v}, \vec{v}-\vec{w}, \vec{w}-\vec{u}\}$ is linearly dependent.
(d) The polynomials $(x-1)(x+2), x(x+2)$, and $x(x-1)$ are linearly independent.

Running list of vocabulary words that could be a quiz word

- linear equation
- system of linear equations
- linear combination of a set of vectors
- span of a set of vectors
- linearly independent
- linearly dependent
- reduced row echelon form
- pivot
- homogeneous system
- free variable
- row equivalent
- consistent system
- inconsistent system
- trace of a matrix
- transpose of a matrix
- inverse of a matrix
- elementary matrix
- transformation
- domain
- codomain
- range
- vector space (I will not ever ask you to define this on a quiz - the definition is way too long-but you should make sure you know what makes something a vector space)
- subspace

