Part I (due Monday, March 4 at the beginning of class)

No Part I this time. Have a great break!

Part II (prepare for Monday, March 4)

Review the discussion of span on Daily Work 18 as needed to complete this question: Let $\vec{f}=\cos ^{2} x$ and $\vec{g}=\sin ^{2} x$. Which of the following lie in the space spanned by \vec{f} and \vec{g} ?

1. $\cos 2 x$
2. $3+x^{2}$
3. 1
4. $\sin x$
5. 0

Part III: Homework (due Wednesday, March 6 at the beginning of class)

1. For the given V and $W \subseteq V$, determine if W is a subspace of V. Prove your answer.
(a) $V=M_{n \times n}, W=$ the set of all $n \times n$ symmetric matrices
(b) $V=M_{2 \times 2}, W=\{A: A B=B A$ for some fixed 2×2 matrix $B\}$
(c) $V=P_{3}(x), W=$ the set of all polynomials of the form $a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}$ such that $a_{0}, a_{1}, a_{2}, a_{3} \in \mathbb{Z}$
(d) $V=C[a, b]$, the set of all continuous functions on the interval $[a, b], W=\left\{f(x): \int_{a}^{b} f(x)=0\right\}$

Running list of vocabulary words that could be a quiz word

- linear equation
- system of linear equations
- linear combination of a set of vectors
- span of a set of vectors
- linearly independent
- linearly dependent
- reduced row echelon form
- pivot
- homogeneous system
- free variable
- row equivalent
- consistent system
- inconsistent system
- trace of a matrix
- transpose of a matrix
- inverse of a matrix
- elementary matrix
- transformation
- domain
- codomain
- range
- vector space (I will not ever ask you to define this on a quiz - the definition is way too long-but you should make sure you know what makes something a vector space)
- subspace

