Part I (due Friday, February 23 at the beginning of class)

Carefully read the material below, taking notes for yourself. No reading questions today; if you have questions about the reading, bring them to class to discuss, but you don't need to turn anything in for Part I this time.

Recall that if S is a set of vectors, then $\operatorname{Span}(S)$ is the set of all linear combinations of vectors in S. We originally defined span for vectors in \mathbb{R}^{n}, but we can extend the concept to vectors in any vector space with the same definition.

Example 1. Let $S=\{(a, b, 0): a, b \in \mathbb{R}\}$. Let $\vec{v}=(1,2,0)$ and $\vec{w}=(-1,5,0)$. Do \vec{v} and \vec{w} span S ?

Solution: We consider $c \vec{v}+k \vec{w}=(a, b, 0)$. Then $c-k=a$ and $2 c+5 k=b$; solving this system gives $k=\frac{b-2 a}{7}$ and $c=\frac{b+5 a}{7}$, so yes, these two vectors span S.

Example 2. Do $x+1$ and $(x+1)^{2}$ span P_{2}, the set of all polynomials of degree at most 2 with real number coefficients?

Solution: We consider

$$
\begin{aligned}
a_{0}+a_{1} x+a_{2} x^{2} & =k(x+1)+c(x+1)^{2} \\
& =k x+k+c x^{2}+2 c x+c \\
& =(k+c)+(k+2 c) x+c x^{2},
\end{aligned}
$$

which gives us the system

$$
\begin{aligned}
k+c & =a_{0} \\
k+2 c & =a_{1} \\
c & =a_{2} .
\end{aligned}
$$

Then $k=a_{0}-a_{2}$ and $k=a_{1}-2 a_{2}$, which implies $a_{0}=a_{1}-a_{2}$, so these two polynomials only produce polynomials in which the constant term is the difference of the other two coefficients. Hence, they do not span P_{2}.

Part II

In lieu of presentations, we'll do more rounds of the Subspace Game on Friday.

Part III: Homework (due Wednesday, March 6 at the beginning of class)

1. True or False? If true, prove; if false, give an explained counterexample.
(a) Every vector space is a subspace of itself.
(b) Every subset of a vector space V that contains the zero vector in V is a subspace of V.
(c) If W_{1} and W_{2} are both subspaces of a vector space V, then $W_{1} \cap W_{2}=\left\{\vec{w}: \vec{w} \in W_{1}\right.$ and $\left.\vec{w} \in W_{2}\right\}$ is also a subspace of V.

Running list of vocabulary words that could be a quiz word

- linear equation
- system of linear equations
- linear combination of a set of vectors
- span of a set of vectors
- linearly independent
- linearly dependent
- reduced row echelon form
- pivot
- homogeneous system
- free variable
- row equivalent
- consistent system
- inconsistent system
- trace of a matrix
- transpose of a matrix
- inverse of a matrix
- elementary matrix
- transformation
- domain
- codomain
- range
- vector space (I will not ever ask you to define this on a quiz - the definition is way too long-but you should make sure you know what makes something a vector space)
- subspace

