Part I (due Wednesday, February 21 at the beginning of class)

As we talked about in class, we will often care about just part of a larger vector space as we define here:
Definition 1. A nonempty subset W of a vector space V is a subspace if W is itself a vector space (under the addition and scalar multiplication of V).

It turns out that all we need for a subset of a vector space to be itself a vector is that the set is nonempty and closed under vector addition and scalar multiplication (the rest of the axioms follow pretty much for free from the parent space).
Theorem 1 ((2-step) Subspace Test). Let W be a nonempty subset of a vector space V. Then W is a subspace of V if and only if both
(i) $\vec{v}+\vec{w} \in W$ for all $\vec{v}, \vec{w} \in W$ (W is closed under addition), and
(ii) $c \vec{v} \in W$ for all $v \in W$ and all scalars c (W is closed under scalar multiplication).

Example 1. Consider the $x y$-plane as a subset of \mathbb{R}^{3}. Every vector in the $x y$-plane can be written as $(x, y, 0)$ for some $x, y \in \mathbb{R}$, e.g., $(2,1,0)$ and $(\pi,-17892,0)$ are both elements of the $x y$-plane in \mathbb{R}^{3}. Thus, the $x y$-plane is a nonempty subset of \mathbb{R}^{3}.

To show that $W=x y$-plane $=\{(x, y, 0): x, y \in \mathbb{R}\}$ is closed under vector addition, we need to start with two arbitrary elements of W. Suppose $\left(x_{1}, y_{1}, 0\right),\left(x_{2}, y_{2}, 0\right) \in W$. Then we have

$$
\left(x_{1}, y_{1}, 0\right)+\left(x_{2}, y_{2}, 0\right)=\left(x_{1}+x_{2}, y_{1}+y_{2}, 0\right) \in W
$$

so W is closed under vector addition.
Let c be a scalar. Then we have

$$
c\left(x_{1}, y_{1}, 0\right)=\left(c x_{1}, c y_{1}, 0\right) \in W
$$

so W is closed under scalar multiplication.
Hence, W (the $x y$-plane) is a subspace of \mathbb{R}^{3}.

No Reading Questions this time, and nothing to turn in for Part I, but bring your questions on this so we can discuss them - and we'll do a lot more practice with subspaces in class, too!

Part II (prepare for Wednesday, February 21)

Determine if the subset on the left is a subspace of the corresponding vector space on the right.

subset	vector space
line through the origin	\mathbb{R}^{2}
$y=x+2$	\mathbb{R}^{2}
$\{\overrightarrow{0}\}$	\mathbb{R}^{4}
plane	\mathbb{R}^{3}
$\left\{\vec{v} \in \mathbb{R}^{3}: v_{2} \geq 0\right\}$	\mathbb{R}^{3}

Part III: Homework (due Wednesday, March 6 at the beginning of class)

1. Let $V=\{(x, y): x, y \in \mathbb{R}\}$ with the vector addition $\left(x_{1}, y_{1}\right) \oplus\left(x_{2}, y_{2}\right)=\left(x_{1}+x_{2}, y_{1} y_{2}\right)$ and scalar multiplication $c *(x, y)=(x, 0)$. Is V with this vector addition and scalar multiplication a vector space? If yes, show how all the axioms are satisfied; if no, give examples for each of the axioms that fail to be satisfied.

Running list of vocabulary words that could be a quiz word

- linear equation
- system of linear equations
- linear combination of a set of vectors
- span of a set of vectors
- linearly independent
- linearly dependent
- reduced row echelon form
- pivot
- homogeneous system
- free variable
- row equivalent
- consistent system
- inconsistent system
- trace of a matrix
- transpose of a matrix
- inverse of a matrix
- elementary matrix
- transformation
- domain
- codomain
- range
- vector space (I will not ever ask you to define this on a quiz - the definition is way too long - but you should make sure you know what makes something a vector space)
- subspace

