Part I (due Monday, February 19 at the beginning of class)

Think about whether the set

$$
V=\left\{\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]: a, b, c, d \in \mathbb{R}\right\}
$$

satisfies the vector space axioms we talked about in class Friday. You don't need to turn anything in for this, but come prepared to discuss it.

Here's the definition again:
Definition 1. Let V be a nonempty set of objects on which addition and scalar multiplication are defined. If the following axioms hold for all \vec{u}, \vec{v}, and \vec{w} in V and for all scalars c and d, then V is a vector space (and the objects in V are vectors).

1. $\vec{v}, \vec{w} \in V$ implies $\vec{v}+\vec{w} \in V$ (closure under addition)
2. $\vec{v}+\vec{w}=\vec{w}+\vec{v}$ (addition is commutative)
3. $\vec{u}+(\vec{v}+\vec{w})=(\vec{u}+\vec{v})+\vec{w}$ (addition is associative)
4. There is a $\overrightarrow{0} \in V$ such that $\overrightarrow{0}+\vec{v}=\vec{v}+\overrightarrow{0}=\vec{v}$ (additive identity)
5. For each $\vec{v} \in V$, there exists a vector $-\vec{v} \in V$ such that $\vec{v}+(-\vec{v})=-\vec{v}+\vec{v}=\overrightarrow{0}$ (additive inverse)
6. $c \vec{v} \in V$ (closure under scalar multiplication)
7. $c(\vec{v}+\vec{w})=c \vec{v}+c \vec{w}$ (distributivity of scalar multiplication over addition)
8. $(c+d) \vec{v}=c \vec{v}+d \vec{v}$ (another form of distributivity)
9. $c(d \vec{v})=(c d) \vec{v}$ (associativity of scalar multiplication)
10. $1 \vec{v}=\vec{v}$ (scalar multiplicative identity)

Part II (prepare for Wednesday, February 21)

There will be a WeBWorK assignment posted by Friday night.

Part III: Homework (due Wednesday, February 21 at the beginning of class)

1. For each of the following, give an explained example or explain why such an example does not exist.
(a) a one-to-one transformation from \mathbb{R}^{3} to \mathbb{R}^{4}
(b) an onto transformation from \mathbb{R}^{3} to \mathbb{R}^{4}
(c) a one-to-one but not onto transformation from \mathbb{R}^{4} to \mathbb{R}^{4}

Running list of vocabulary words that could be a quiz word

- linear equation
- system of linear equations
- linear combination of a set of vectors
- span of a set of vectors
- linearly independent
- linearly dependent
- reduced row echelon form
- pivot
- homogeneous system
- free variable
- row equivalent
- consistent system
- inconsistent system
- trace of a matrix
- transpose of a matrix
- inverse of a matrix
- elementary matrix
- transformation
- domain
- codomain
- range
- vector space (I will not ever ask you to define this on a quiz - the definition is way too long-but you should make sure you know what makes something a vector space)

