## Part I (due Wednesday, February 7 at the beginning of class)

To review linear independence and dependence and prepare to delve into them more fully, download the Systems of Equations chapter from Linear Algebra and Applications: An Inquiry-Based Approach and read pages 103-108, stopping when you get to Activity 6.2. Do Preview Activity 6.1 as your reading question when you get to it in the text.

## Reading Questions

Preview Activity 6.1 in the section you read.

## Part II (due Wednesday, February 7)

1. Complete these examples:

Example 1. (a) If $A=\left[\begin{array}{rrr}1 & 4 & 3 \\ -1 & -2 & 0 \\ 2 & 2 & 3\end{array}\right]$, find $A^{-1}$ (if it exists).
(b) If $A=\left[\begin{array}{cc}4 & 2 \\ 10 & 5\end{array}\right]$, find $A^{-1}$ (if it exists).
(c) What does the Purple Theorem tell us about the system of equations

$$
\begin{aligned}
x_{1}+4 x_{2}+3 x_{3} & =0 \\
-x_{1}-2 x_{2} & =0 \\
2 x_{1}+2 x_{2}+3 x_{3} & =0 ?
\end{aligned}
$$

2. Activity 6.1 in the section you read.

## Part III: Homework (due Wednesday, February $14 \bigcirc$ at the beginning of class)

1. A square matrix $A$ is idempotent if $A^{2}=A$.
(a) Show that if $A$ is idempotent, then so is $I-A$.
(b) Show that if $A$ is idempotent, then $2 A-I$ is invertible and $(2 A-I)^{-1}=2 A-I$.
2. True or False? If true, prove; if false, give an explained counterexample.
(a) If an $m \times n$ matrix $A$ has a pivot in every row, then the equation $A \vec{x}=\vec{b}$ has a unique solution for every $\vec{b} \in \mathbb{R}^{m}$.
(b) If $\vec{x}_{0}$ is a solution for $A \vec{x}=\vec{b}_{0}$ and $\vec{x}_{1}$ is a solution for $A \vec{x}=\vec{b}_{1}$, then $\vec{x}_{0}+\vec{x}_{1}$ is a solution for $A \vec{x}=\vec{b}_{0}+\vec{b}_{1}$.
(c) If $\vec{x}_{0}$ is a solution for $A \vec{x}=\vec{b}$, then $c x_{0}$ is a solution for $A \vec{x}=c \vec{b}$, where $c$ is a scalar.
(d) If $A$ is a $3 \times 4$ matrix, then the homoneous system $A \vec{x}=\overrightarrow{0}$ has only the trivial solution.
(e) If $A$ is a $3 \times 2$ matrix, then the homeneous system $A \vec{x}=\overrightarrow{0}$ has non-trivial solutions.

## Running list of vocabulary words that could be a quiz word

- linear equation
- system of linear equations
- linear combination of a set of vectors
- span of a set of vectors
- linearly independent
- linearly dependent
- reduced row echelon form
- pivot
- homogeneous system
- free variable
- row equivalent
- consistent system
- inconsistent system
- trace of a matrix
- transpose of a matrix
- inverse of a matrix
- elementary matrix

