Part I: (due at the beginning of class Wednesday, April 3)

Try out Example 1 on the yellow/white Comparison Tests handout and read Theorem 1 on that handout.

Remember that what you turn in for Part I should have 3 parts, as mentioned in the syllabus:

- (a) Your responses to the reading questions.
- (b) Your own questions/comments on the reading/anything else we've been doing in class.
- (c) The amount of time you spent on Part I (including the time spent reading/watching).

Part II: Exercises

No Part II this time. Have a great break!

Part III: Homework Problems (due Wednesday, April 3 at the beginning of class)

- As mentioned in class, ∑_{n=1}[∞] 1/n² = π²/6. Leonhard Euler (pronounced "Oiler") first discovered this (though his proof was not valid at first, he did several valid proofs later), and he then later showed that ∑_{n=1}[∞] 1/n⁴ = π⁴/90. Use these two results to find the sum of each of the following.
 (a) ∑_{n=2}[∞] 1/n²
 (b) ∑_{n=3}[∞] 1/((n+1))²
 (c) ∑_{n=2}[∞] 1/((2n))²
 (d) ∑_{n=2}[∞] (3/n)⁴
 (e) ∑_{n=1}[∞] 1/((n-2))⁴
- 2. Use the integral test to determine if the series converges or diverges. Make sure you explain why the series satisfies the hypotheses of the Integral Test.

(a)
$$\sum_{n=0}^{\infty} e^{-n}$$

(b)
$$\sum_{n=2}^{\infty} \frac{1}{n\sqrt{\ln n}}$$

mini-Celebration of Learning Wednesday, March 27

The mini-Celebration of Learning may have problems on geometric series, telescoping series, series and their sequences of partial sums, or the nth Term Test for Divergence.